AD
液体吸附材料 溴化锂,氯化锂,氯化钙,乙二醇,三甘醇等[2]
对表中各种除湿方式比较可以看出,利用吸附材料除湿是现有的除湿方式中能够实现湿度独立控制的较为可行的方式。 洁净网
2.2 吸湿材料除湿基本原理
采用液体和固体吸湿材料除湿[1.4]的系统出现于本世纪50年代,之后蓬勃的发展起来,已经开发出多种形式的系统。篇幅所限,这里不做介绍。吸湿剂完成整个除湿----再生循环的状态变化如下图所示:
图1 吸湿剂状态的变化
采用固体吸附材料除湿的系统,有固定床式和转轮式两种。固定床式固体吸附除湿装置是通过改变空气测流向实现间歇式的吸湿再生;转轮式除湿得到了更广泛的应用,它可实现连续的除湿和再生。这两种除湿方式有着致命的弱点就是动态的运行过程,期间混合损失大,影响效率,另外,这种形式很难实现等温的除湿过程,而除湿过程释放出的潜热使除湿剂的温度升高,吸湿能力大打折扣,整个过程传热传质的不可逆损失大,效率不高。 洁净网
相对于固体吸附材料,由于液体具有流动性,采用液体吸湿材料的传热传质设备比较容易实现;另外,液体除湿过程容易被冷却,从而实现等温的除湿过程,不可逆损失可以减小。所以采用液体吸收除湿的方法有可能达到较好的热力学效果。
图2、图3是带有不同浓度溶液的饱和分压力线的湿空气的温湿图。图2是液体除湿中溶液状态变化过程,1-->2是除湿过程,溶液浓度升高,同时若采用逆流、冷却等手段,该过程可以近似等温甚至降温进行;2-->3-->4是溶液被加热、再生的过程,该过程需要提供热量,使溶液中的水份蒸发,溶液变浓;4-->1溶液被冷却,再进入除湿器除湿。图3表示的是液体除湿中空气的状态的变化过程,双线表示除湿的过程,单线表示再生的过程。
图2 吸湿溶液的循环过程 图3 除湿及再生空气的循环过程 洁净网
3 液体除湿空调系统
液体除湿系统发展已经有40几年的历史,应用过程中出现了诸多问题,如开始使用的溴化锂、氯化锂溶液对管道、设备有强腐蚀性,而一些有机的溶液如三甘醇有挥发性,有机物弥漫在空气中,会危害人体健康;由于稀释和再生过程都为变温过程,不可逆损失大,导致该类系统的效率很低,产出冷量与消耗的再生热量的比(能效比)一般在0.3左右。上述的问题现在已经基本得到了解决:使用塑料材料可以防止盐溶液的腐蚀,而且成本较低,盐溶液不会挥发到空气中影响污染室内空气;
通过对调整工艺流程,可以得到接近等温的除湿与再生过程,实现较高的能效比。
3.1 液体降湿系统的能耗分析
要提高液体除湿系统的能耗,首先要分析原有的液体除湿系统能耗低的原因。传统的液体除湿空调系统除湿器溶液的流量很大,浓溶液和稀溶液的浓度差在2%左右。这样尽管在除湿过程中采取一些冷却的措施来减小由于溶液温升导致其吸湿能力的下降,但是传质过程中的水蒸气分压差造成的不可逆损失仍然很大。如下图所示: 洁净网
上述过程导致的直接后果是再生温度高,从而再生器的效率低。由于解决上述问题的方法是采用分级除湿的思路[5],即在除湿的过程盐溶液的浓度是随着湿空气湿度的变化而变化的,同时每一级都采取相应的冷却措施。这样,如图5所示,传热温差,传质的浓度差会大大减小,从而减小了除湿过程的不可逆损失。充分的利用了溶液的吸湿能力,即在吸收同样多的湿量的情况下,分级的方法可使得溶液的浓度差达到10%左右。这样送回再生器的溶液的浓度降低了,更容易被再生,从而减少了高温热源的消耗。
根据质量平衡关系,采用了分级思想的除湿器溶液的流量会因为浓度差的增大而变小,而小流量会减小气、液的接触面积。为了强化换热,保证除湿器每一级内的溶液流量很大,而级与级之间的流量很小。这样即保证了换热有充分的接触面积,又使得溶液进出口可以实现高的浓度差。整个除湿器的流程如图6所示,图中的数据是一组实验结果。其中,除湿过程不断被冷却,冷却水一部分来自室外的冷却塔,一部分来自室内回风。对室内回风的焓的回收也使得整个系统运行的能效比大大提高。 洁净网
图6 除湿器流程图
对于再生器也要采用分级的思想,用高温的热源再生比较浓的溶液,用比较低温的热源再生比较稀的溶液,这样使得热源的利用效率提高。图7是一种分级再生器的思想,图中的温度都为设计温度。
定义以下几个参数:
其中,EERliquid为液体除湿空调的能效比,Qc
(责任编辑:admin) |